Nerve growth factor uses Ras/ERK and phosphatidylinositol 3-kinase cascades to up-regulate the N-methyl-D-aspartate receptor 1 promoter.
نویسندگان
چکیده
We reported previously that nerve growth factor (NGF) up-regulates activity of the N-methyl-D-aspartate receptor 1 (NR1) promoter. We have explored the pathways and nuclear targets of NGF signaling in regulating the NR1 promoter. PD98059 and wortmannin, but not rapamycin, significantly attenuated NGF-induced transcriptional activity from an NR1 promoter-luciferase construct. Coexpressing constitutively active forms of Ras, Raf, or MAPK/ERK kinase 1 (MEK1) increased promoter activity dramatically. The MEK1-induced increase was largely prevented by mutations of the tandem GC boxes in the promoter. Promoter activity was also increased significantly by coexpressed GC box-binding proteins (Sp1, 3, or 4) in nonstimulated PC12 cells. Either an extracellular signal-regulated kinase-1 (ERK1)- or Sp1-specific antibody coprecipitated Sp1 with ERKs, and the coprecipitation was enhanced significantly by NGF treatment of PC12 cells. ERK2 also incorporated radioactivity of [gamma(32)P]ATP into recombinant Sp1. However, ERK2-treated Sp1 and PC12 nuclear extracts or nuclear extracts from NGF-treated cells exhibited reduced binding to the promoter or a consensus GC box. Our results suggest that NGF utilizes both the Ras/ERK and phosphatidylinositol 3-kinase pathways to up-regulate NR1 promoter activity and that Sp1 is a novel substrate of NGF-activated ERKs. NGF-increased NR1 promoter activity may involve a complicated mechanism of Sp1 phosphorylation and possible transcription factor exchange.
منابع مشابه
P3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory
Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...
متن کاملp21 ras and phosphatidylinositol-3 kinase are required for survival of wild-type and NF1 mutant sensory neurons.
Nerve growth factor (NGF) is a required differentiation and survival factor for sympathetic and a majority of neural crest-derived sensory neurons in the developing vertebrate peripheral nervous system. Although much is known about the function of NGF, the intracellular signaling cascade that it uses continues to be a subject of intense study. p21 ras signaling is considered necessary for senso...
متن کاملAkt/protein kinase B prevents injury-induced motoneuron death and accelerates axonal regeneration.
Motoneurons require neurotrophic factors for their survival and axonal projection during development, as well as nerve regeneration. By using the axotomy-induced neuronal death paradigm and adenovirus-mediated gene transfer, we attempted to gain insight into the functional significances of major growth factor receptor downstream cascades, Ras-extracellular signal-regulated kinase (Ras-ERK) path...
متن کاملCombination of sublethal concentrations of epidermal growth factor receptor inhibitor and microtubule stabilizer induces apoptosis of glioblastoma cells.
The oncogenic epidermal growth factor receptor (EGFR) pathway triggers downstream phosphatidylinositol 3-kinase (PI3K)/RAS-mediated signaling cascades. In transgenic mice, glioblastoma cannot develop on single but only on simultaneous activation of the EGFR signaling mediators RAS and AKT. However, complete blockade of EGFR activation does not result in apoptosis in human glioblastoma cells, su...
متن کاملRole of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1.
Neurotrophins promote multiple actions on neuronal cells including cell survival and differentiation. The best-studied neurotrophin, nerve growth factor (NGF), is a major survival factor in sympathetic and sensory neurons and promotes differentiation in a well-studied model system, PC12 cells. To mediate these actions, NGF binds to the TrkA receptor to trigger intracellular signaling cascades. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 276 48 شماره
صفحات -
تاریخ انتشار 2001